Болезнь Пертеса тазобедренного сустава у детей: симптоматика и причины возникновения, процесс развития болезни, диагностика, профилактика и лечение болезни Пертеса у ребенка

Какой врач лечит болезнь Пертеса?

Этот вид остеохондропатии лечит ортопед. Лучше всего обращаться в специализированные центры травматологии и ортопедии.

Осложнения следующие:

Причины возникновения

Истинные причины развития болезни до сих пор неизвестны. Но учёные выдвигают несколько предположений появления патологии. Так, основным определяющим фактором выступает миелодисплазия — недоразвитие в спинном мозге. Проходимость и количество кровеносных сосудов, обеспечивающих головку бедренной кости кровью, недостаточное.

Другие факторы, которые могут привести к началу болезни:

  1. Травмы тазобедренных суставов;
  2. Повышенные физические нагрузки;
  3. Анатомические особенности структуры тазобедренного аппарата;
  4. Нарушение обменных процессов (усвоение фосфора, кальция);
  5. Гормональные изменения в организме (переходный возраст);
  6. Инфекционное поражение суставов (например, после перенесённого синусита, ангины, отита).

Обычно начальные признаки появления недуга родители замечают через некоторое время после перенесённой простуды или травмы ребёнком. Именно это становится решающим фактором возникновения заболевания у детей с нарушенным кровообращением в области тазобедренного сустава. Стоит отметить, что наследственность также играет определённую роль в развитии болезни Пертеса, но далеко не главную.

Врачи и учёные заметили, что болеют в основном мальчики (особенно недоношенные или рождённые с малой массой тела). В свою очередь, у девочек патология протекает в более тяжёлой форме. Чаще болезнь обнаруживается в возрасте 3−5 лет, реже — 13−15 лет.


Если деформация головки бедра формируется на четвёртой стадии, то в этом случае развивается артроз тазобедренного сустава.

Количество хромосом у человека

О том, сколько хромосом содержится в клетке организма человека, известно со школьного курса биологии. Набор всех хромосом называется кариотипом. Он является видоспецифичным признаком – одинаков для всех отдельно взятых представителей рода живых существ. Так, в клетке человека содержится 23 пары хромосом, 22 из которых – аутосомы, а 1 пара – половые хромосомы (XX у женщин, XY – у мужчин).

Изменение общего количества хромосом в организме ведет к необратимым последствиям. В результате наблюдается развитие генных заболеваний, которые могут приводить к врожденным аномалиям развития и даже к гибели плода еще на внутриутробном этапе развития. Врачи стараются выявить возможные нарушения на ранних этапах, чтобы исключить появление на свет малышей с генными болезнями.


Для начала необходимо определить, что означает термин «соматическая клетка». Этим понятием обозначают любые клетки человеческого организма, которые не относятся к половым. Они определяют основные параметры человеческого организма, такие как:

Прожиточный оптимум

Сначала договоримся о терминологии. Окончательно человеческие хромосомы посчитали чуть больше полувека назад — в 1956 году. С тех пор мы знаем, что в соматических, то есть не половых клетках, их обычно 46 штук — 23 пары.

Хромосомы в паре (одна получена от отца, другая — от матери) называют гомологичными. На них расположены гены, выполняющие одинаковые функции, однако нередко различающиеся по строению. Исключение составляют половые хромосомы — Х и Y, генный состав которых совпадает не полностью. Все остальные хромосомы, кроме половых, называют аутосомами.

Количество наборов гомологичных хромосом — плоидность — в половых клетках равно одному, а в соматических, как правило, двум.

Интересно, что не у всех видов млекопитающих число хромосом постоянно. Например, у некоторых представителей грызунов, собак и оленей обнаружили так называемые В-хромосомы. Это небольшие дополнительные хромосомы, в которых практически нет участков, кодирующих белки, а делятся и наследуются они вместе с основным набором и, как правило, не влияют на работу организма. Полагают, что В-хромосомы — это просто удвоенные фрагменты ДНК, «паразитирующие» на основном геноме.

У человека до сих пор В-хромосомы обнаружены не были. Зато иногда в клетках возникает дополнительный набор хромосом — тогда говорят о полиплоидии, а если их число не кратно 23 — об анеуплоидии. Полиплоидия встречается у отдельных типов клеток и способствует их усиленной работе, в то время как анеуплоидия обычно свидетельствует о нарушениях в работе клетки и нередко приводит к ее гибели.

Деление при образовании половых клеток (мейоз) устроено более сложно. После удвоения ДНК каждая хромосома и ее копия, как обычно, сшиты когезинами. Затем гомологичные хромосомы (полученные от отца и матери), а точнее их пары, тоже сцепляются друг с другом, и получается так называемая тетрада, или четверка. А дальше клетке предстоит поделиться два раза. В ходе первого деления расходятся гомологичные хромосомы, то есть дочерние клетки содержат пары одинаковых хромосом. А во втором делении эти пары расходятся, и в результате половые клетки несут одинарный набор хромосом.

Почему у людей именно 23 пары хромосом?

Еще из курса школьной биологии нам известно, что при нормальном формировании человеческого организма (читай: без различных врожденных патологий), большая часть нашей наследственной информации закодирована в 23 парах хромосом. Но вы никогда не задумывались, почему этих пар именно 23? Почему не 24, 25 или даже 16? Да и вообще, почему хромосом именно четное число? Давайте разбираться.

Чтобы понять, что такое хромосомы, сначала нужно понять, что такое ДНК. ДНК представляет собой сложную молекулу, встречающуюся у всех растений и животных. Она содержится почти в каждой клетке организма и несет в себе всю информацию, необходимую для поддержания жизнедеятельности организма, обеспечения всех внутренних процессов и, что самое важное, для размножения. ДНК является основным способом передачи наследственной информации и в процессе размножения часть ДНК передается от обоих родителей потомству.

Норма для здорового человека

Если верить последней статистике, 1% новорожденных сегодня рождается с отклонениями на физиологическом уровне, когда появляется недостаточное количество хромосом. Эта проблема уже становится глобальной, чем вызывает сильную озабоченность у врачей. У здорового человека (мужчина или женщина) насчитывается 46 хромосом, то есть 23 пары. Интересен тот факт, что до 1996 года у ученых не было сомнений, что пар структурных единиц не 23, а 24. Ошибка была допущена Теофилусом Пейнтером, известным в своем круге ученым. Ее нашли и исправили два других светила — Альберт Леван и Джо-Хин Тьо.

Это интересно: какие имеют последствия хромосомные мутации у человека?

Какое число хромосом в клетках у здорового человека? Что будет, если хромосом больше или меньше?

Иногда хромосом оказывается слишком много.

Чаще всего такие аномалии возникают в процессе деления клетки. Этот процесс легче понять при внимательном рассмотрении рис. 6, который представляет собой ту же основную схему, что и приведенная на рис. 4: этапы 1, 2, 3, 4 идентичны. Основное различие мы видим на следующих этапах.

Рис. 6. Аномальное деление клетки (например, в яичнике), в результате которого образуется одна клетка с лишней хромосомой

Пятый этап: клеточное ядро и клетка, в которой оно находится, начинают делиться, а нормального распределения хромосом не происходит.

Шестой этап: обе хромосомы одной пары остаются в одной клетке, скажем в яйцеклетке, а вторая, дочерняя, клетка оказывается лишенной данной хромосомы. Чаще всего это происходит с 21-й хромосомой.

Когда яйцеклетка с лишней хромосомой оплодотворяется нормальным сперматозоидом, возникает зародышевая клетка (зигота) с этой лишней хромосомой. Нарушение расхождения хромосом может начаться еще ранее, например между третьим и четвертым этапами. В результате возникает сперматозоид (или яйцеклетка) с лишней или недостающей хромосомой. Индивид, рожденный с лишней 21-й хромосомой (рис. 7) во всех или многих клетках, будет проявлять признаки болезни Дауна (трисомия 21). Этот наиболее распространенный хромосомный тип болезни Дауна, составляющий почти 96 % всех случаев упомянутого заболевания, считается ненаследуемым вариантом. У остальных 4 % живорожденных детей с болезнью Дауна имеются перестройки хромосом, которые часто передаются по наследству.

Рис. 7. Аномальное число хромосом (47), характерное для болезни Дауна.

Для этой болезни типична лишняя 21-я хромосома.

Феномен нерасхождения с возникновением лишней хромосомы касается не только 21-й хромосомы (болезнь Дауна), но может произойти и с 13-й, 18-й и любой другой хромосомой. Почти во всех этих случаях у ребенка обнаруживаются тяжелые нарушения развития. Особенно интересно и важно следующее обстоятельство: в большинстве случаев появления лишней хромосомы у новорожденного возраст матери достигает по крайней мере 35 лет (см. гл. 15). Имеются какие-то неизвестные факторы, способствующие нерасхождению хромосомы, что приводит к возникновению синдромов трисомии. Такими факторами, в частности, считаются: облучение рентгеновскими лучами (и не обязательно во время беременности!), вирусная инфекция, диабет или болезнь щитовидной железы у матери и даже наличие фтористых соединений в питьевой воде. Неоднократно было также подмечено, что некоторые из серьезных хромосомных аномалий, включая болезнь Дауна, могут возникать «вспышками». Например, значительное число пораженных детей рождается в одну осень или зиму. Это наталкивает на мысль о роли вирусов в нарушении деления клеток эмбриона.

Наличие лишней 21-й хромосомы можно наблюдать в микроскоп. Впервые это показали французский врач Лежен и его коллеги в 1959 г. Обнаружение у плода или ребенка лишней хромосомы означает, что родители неизбежно должны быть готовы к наличию у ребенка умственной отсталости, карликовости, типичного для болезни Дауна лица, маленькой головы и встрече с другими медицинскими, эмоциональными и социальными проблемами. Наличие лишней 13-й хромосомы обычно сопровождается умственной отсталостью, маленькой головой, аномалиями развития ушей и глаз, волчьей пастью, заячьей губой, наличием лишнего пальца на каждой руке, а также другими аномалиями. Лишняя 18-я хромосома вызывает умственную отсталость, дефекты ушей, глаз, рук и головы.

Очень редко ребенок может родиться с одной. недостающей аутосомой. В большинстве случаев эта аномалия настолько тяжелая, что несовместима с жизнью. Если ребенок и рождается живым, то дефекты у него так серьезны, что он неизбежно умирает вскоре после рождения.

Смешение нормальных и аномальных клеток

В процессе клеточных делений могут возникнуть два различных типа клеток: с нормальным числом хромосом и с лишней хромосомой. В результате индивидуум оказывается состоящим из смеси нормальных и аномальных клеток, и у него оказываются аномальными отдельные органы или ткани. Например, клетки с лишними хромосомами находятся у него только в мозгу, в половых органах, в крови и в коже, все же остальные органы образованы нормальными клетками. Такое, состояние называется хромосомным мозаицизмом.

Если 40 % — клеток содержат нормальные 46 хромосом, а 60 %—лишнюю 21-ю хромосому, признаки болезни Дауна могут быть выражены, но в более легкой форме в зависимости от того, какие органы образованы нормальными клетками. Что же касается мозаицизма по другим аутосомам, то он встречается чрезвычайно редко (см. гл. 3).

Феномен нерасхождения с возникновением лишней хромосомы касается не только 21-й хромосомы (болезнь Дауна), но может произойти и с 13-й, 18-й и любой другой хромосомой. Почти во всех этих случаях у ребенка обнаруживаются тяжелые нарушения развития. Особенно интересно и важно следующее обстоятельство: в большинстве случаев появления лишней хромосомы у новорожденного возраст матери достигает по крайней мере 35 лет (см. гл. 15). Имеются какие-то неизвестные факторы, способствующие нерасхождению хромосомы, что приводит к возникновению синдромов трисомии. Такими факторами, в частности, считаются: облучение рентгеновскими лучами (и не обязательно во время беременности!), вирусная инфекция, диабет или болезнь щитовидной железы у матери и даже наличие фтористых соединений в питьевой воде. Неоднократно было также подмечено, что некоторые из серьезных хромосомных аномалий, включая болезнь Дауна, могут возникать «вспышками». Например, значительное число пораженных детей рождается в одну осень или зиму. Это наталкивает на мысль о роли вирусов в нарушении деления клеток эмбриона.

Читайте также:  Жировик, просянка, милиум или белые прыщи на лице, в месте шрама: причины возникновения, народные средства лечения, меры профилактики

Сколько хромосом у человека здорового

Однажды ученые задумались: что определяет рост человека, количество рук, ног, пальцев, цвет волос, физическую силу и способности к обучению?

Сегодня люди знают: информация, необходимая для формирования и развития организма, содержится в длинной цепочке генов, которая состоит из дезоксирибонуклеиновой (ДНК), рибонуклеиновой (РНК) кислот и белков.

Заикание у ребенка: причины, симптомы, лечение

В этой цепи находится около 3,1 млрд генов, однако только 1,5% несут в себе основные сведения о будущем человека. Остальную часть ДНК называют мусорной, поскольку она не кодирующая.

Что такое хромосома? Хромосома — это структурная единица генома, которая состоит из нуклеиновых кислот и белков. Образуется из одной, но чрезвычайно длинной молекулы ДНК, предназначается для хранения и передачи основной наследственной информации.

Это понятие впервые предложил немецкий ученый Генрих Вильгельм Готфрид в 1888 году. В буквальном переводе «хромосома» означает ‘окрашенное тело’, так как эта структура хорошо реагирует на красители при исследовании.

В начале XX века была выдвинута теория, что именно хромосомы отвечают за наследственность. В ходе экспериментов на плодовой мушке выявили, что в нуклеопротеидной единице локализовано огромное число генов в определенной последовательности.

Передается ли COVID-19 половым путем, рассказала казахстанский врач

Здоровый человек имеет 46 хромосом в 23 парах. Двадцать две пары отвечают за определенный набор генов (аутосомные), а двадцать третья — за пол человека. Одну из половых хромосом мы наследуем от матери, вторую — от отца.

Если последняя пара в геноме состоит из двух XX хромосом, родится девочка, если же XY — мальчик.

Существует еще два типа этой болезни:

Характеристика хромосом человека

В ходе расшифровки генома человека описаны характеристики хромосом:

Хромосома 1– Самая большая хромосома.на ее долю приходится почти 10% генома человека . Число генов – около 3000. Более 160 генов связаны с разнообразными заболеваниями: болезнь Альцгеймера, болезнь Гоше, рак протоков молочной железы, кардиомиопатия, катаракта, эктодермальная дисплозия, гипотироидизм, острая лимфобластная лейкемия, нейробластома, рак простаты, атеросклероз.

Хромосома 2 – в ней содержится меньше генов, чем в первой хромосоме. Тем не менее, число заболеваний, связанных с мутациями в генах этой хромосомы, достаточно большое: цистинурия, диабет, рак прямой кишки, фиброматозис, гипотироидизм, ожирение, болезнь Паркинсона, тромбофилия, дистрофия большеберцовой мышцы, аутосомная рецессивная глухота – 9, дистрофия мышц конечностей 2b.

Хромосома 3 – гены, содержащиеся в ней, связаны более с чем 90 различными заболеваниями: кардиомиопатия, рак прямой кишки, коллоректальный рак, гемолитическая анемия, гипокальцемия, миелоидный лейкоз, В-клеточная лимфома, миотоническая дистония, карцинома почки, шизофрения.

Хромосома 4– общее число генов ниже среднего. С этой хромосомой ассоциируют заболевания: болезнь Паркинсона, фенилкетонурия, гипохондроплозия, острый иммунный дефицит, склонность к алкоголизму.

Хромосома 5 – с генами этой хромосомы связан ряд тяжелых заболеваний: мегалопластическая анемия, колоректальный рак, капиллярная гемангиома, дистрофия роговицы, аутосомная доминантная глухота, острая лейкемия, острая дистрофия, астма и др.

Хрмосома 6 – диабет, спиноцеребральная атрофия, гемолитическая анемия, лейкемия, тромбофилия, болезнь Паркинсона, чувствительность к туберкулезу.

Хромосома 7 – хронический грануломотоз, рак прямой кишки, кистозный фиброз, вялая кожа, гемолитическая анемия, карликовость, врожденная миотония, панкреатит, трипсиногеновая недостаточность, болзень коронарной артерии.

Хромосома 8 – число генов относительно небольшое, мутации в них приводят, к таким заболеваниям, как: хондросаркома, эпилепсия, гипотироидизм, восприимчивость к атеросклерозу, синдром Вернера, сфероцитоз и др.

Хромосома 9 – альбинизм, галактезимия, меланома, порфирия, стоматоцитоз, дистония, карцинома базальных клеток.

Хромосома 10 – кардиомиопатия, почечная гиперплозия, катаракта, лейкемия, глиобластома, эндокринная неоплозия, аденокарцинома простаты, шизэнцефалия.

Хромосома 11 – альбинизм, рак груди, рак мочевого пузыря, рак простаты, глухота, эритремия, острый комбинированный иммунодефицит, мужское бесплодие, множественная миелома, талассемия, серповидноклеточная анемия, остеопороз, и др. Общее число заболеваний достаточно велико.

Хромосома 12 – гены распределены в ней неравномерно,. Заболевания: эмфизема, энурез, задержка роста, кератодерма, липома, наследственная миопатия, фенилкетонурия, синдром слюнных желез и др.

Хромосома 13 –гены секвенированы недостаточно, относительно других хромосом обеднена генами. Выявлены: рак мочевого пузыря, глухоты, недостаточность факторов свертываемости крови, мышечная дистрофия, рак поджелудочной железы, болезнь Вилсона и др.

Хромосма 14 – Содержатся гены, важные для работы иммунной системы, с мутациями в генах этой хромосомы связан ряд тяжелых заболеваний: ранняя форма болезни Альцгеймера, кардиомиопатия, сфероцитоз, фенилкетонурия, температурочувствительный апоптоз и др.

Хромосома 15 – секвенирована неполностью. Выявлен большой спектр заболеваний: альбинизм, синдром Барттера, синдром Блюма, гипомеланоз, гинекомастия, лейкемия, мышечная дистрофия, эпилепсия, шизофрения и др.

Хромосома 16 – рак желудка, эритроцитоз, миелоидная лейкемия, тирозиемия, поликистозная болезнь почек, карцинома яичника, тирозиемия, мукополисахаридоз, болезнь рыбьих глаз.

Хромосома 17 – высокое содержание генов: спорадический рак груди, рак прямой кишки, диабет, гемолитическая анемия, рак языка, миостенический синдром, острая лейкемия, мышечная дистрофия, нейробластому, рак яичника, буллезный эпидермолиз.

Хромосома 18 – общее число генов , мутации которых связанны с патологиями, невелико: амилоидоз, рак прямой кишки, рак поджелудочной железы, лимфома, буллезный эпидермолиз и др.

Хромосома 19 – наиболее богата ГЦ-парами нуклеотидов, имеются последовательности, гомологичные последовательностям на 16 других хромосомах человека. С этой мутациями в этой хромосоме связывают патологии: рак прямой кишки, миотоническая дистрофия, атеросклероз коронарной артерии, гипертрофическая кардиомиопатия, миотоническая дистрофия, лимфобластная лейкемия, сахарный идиопатический диабет и др.

Хромосома 20 – по размеру составляет всего около 2% от генома человека. Гены этой хромосомы несут информацию о ряде заболеваний, начиная от ожирения и экземы и заканчивая слабоумием и катарактой. С мутациями в генах 20 хромосомы связаны: болезни сердца, тяжелые нарушения иммунной системы, астма, скелетная дисплазия, диабет и многие другие

Хромосома 21 – самая маленькая по размерам и информационной ёмкости хромосома (в ней обнаружено всего 200 генов). В ней есть участок из 7млн пар нуклеотидов (это больше всего генома бактерии E.Coli) содержащий только один ген. При наличии трех копий этой хромосомы возникает болезнь Дауна. Мутации в этой хромосоме способны вызвать синдром Ушера, голопроэзенцефалию и некоторые формы злокачественных опухолей.

Хромосома 22 – наиболее полно описана (нерасшифровано окло 3% ), секвенирована первой (1999год). Она содержит 500генов. Для этой хромосомы установлены функции примерно половины генов, около 160 генов показывают значительную гомологию с генами мыши. Несмотря на свои небольшие размеры и малое число генов, ее патология установлена при некоторых генетических и онкологических заболеваниях. Сейчас известно 27 заболеваний, вызванных нарушениями в 22 хромосоме. Нарушения генов в этой хромосоме вызывают: рак, предрасположенность к шизофрении, болезни Паркинсона, серьезным аномалиям сердца и нервной системы. При лейкозах и лимфомах выялены трисомии и моносомии, обмен участками (транслокации) различных хромосом. Самый известный пример – филадельфийская хромосома, образованная в результате транслокации между хромосомами 9 и 22. Трисомия (3 копии вместо 2) вызывает синдром кошачьего глаза (колобома наружной оболочки), атрезию ануса, некоторые пороки развития и умственную отсталость. Трисомия – вторая по значению причина выкидышей у беременных.

Хромосома Х – женская половая хромосома,наличие двух Х хромосом определяет женский пол, ХY- мужской пол. Генов в хромосоме Х немного,с ними связаны следующие заболевания: рак груди, рак простаты, кардиомиопатия, эпилепсия, гемофилия В, ихтиоз,синдром Барта,мукополисахароидоз 2.

Y Хромосома – мужская половая хромосома, в ней содержится совсем немного генов, меньше 100. Скорости мутации в этой хромосоме в 4 раза выше, чем в хромосоме Х. В ней содержится большое число палимдромов. Основная роль тех генов, которые имеются, заключается в контролировании дифференцировки пола, формировании яичек и процессы сперматогенеза.В частности, основной ген «самцовости» вызваны SRY,кодирует белок, который включает в работу многие гены других хромосом и тем самым вызывает каскад биохимических реакций (конечный результат- образование яичек).На сегодняшний день это самый консервативный ген внутри вида.Отмечаны случаи, когда в клетках имеется не одна ,а две и даже три копии хромосомы Y.При этой патологии проявляется асоциальное поведение и различные психологические нарушения у 35% больных. Совсем немного генов ассоциировано с болезнями человека. Основные из них – гонадный дисгенез и синдром клеток Сертоли

25 Хромосома (митохондриальный геном ) – мит-ДНК называют иногда хромосомой 25 или М хромосомой. Эта ДНК была секвенирована еще в 1981 году. В клетке человека насчитывается от 100 до 1000 митохондрий в каждой из которых содержиться от 2 до 10 молекул кольцевой мит-ДНК.Характеризуется очень компактным расположением генов, как и в геноме бактерий, в ней так же имеются некоторые отличия от ядерной ДНК. митДНК отвественная за синтез всего лишь нескольких, но очень важных белков. Замечено, что в ДНК митохондрии более ранимо, чем геном ДНК. Обнаружена связь между мутациями в митДНК с возникновением рака (рак груди, лимфома), а также с некоторыми тяжелыми наследственными заболеваниями.

Одним из важных итогов изучения генома человека является появление и быстрое развитие молекулярной медицины, основу которой составляет генетическая уникальность каждого человека.

25 Хромосома (митохондриальный геном ) – мит-ДНК называют иногда хромосомой 25 или М хромосомой. Эта ДНК была секвенирована еще в 1981 году. В клетке человека насчитывается от 100 до 1000 митохондрий в каждой из которых содержиться от 2 до 10 молекул кольцевой мит-ДНК.Характеризуется очень компактным расположением генов, как и в геноме бактерий, в ней так же имеются некоторые отличия от ядерной ДНК. митДНК отвественная за синтез всего лишь нескольких, но очень важных белков. Замечено, что в ДНК митохондрии более ранимо, чем геном ДНК. Обнаружена связь между мутациями в митДНК с возникновением рака (рак груди, лимфома), а также с некоторыми тяжелыми наследственными заболеваниями.

Пример решения генетической задачи №3

“Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства”.

Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа – X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.

Возможные фенотипы потомства:

  • X D X D – здоровая девочка
  • X D X d – девочка носительница рецессивного гена дальтонизма
  • X D Y – здоровый мальчик
  • X d Y – мальчик, который болен дальтонизмом

Рождение ребенка с двумя аномалиями возможно – AaX B X b , вероятность такого события ¼ (25%).

Делеция Xp22.3

Делеция данной области часто ассоциируется с синдромом микрофтальмии и линейных дефектов кожи (MLS) и является Х-сцепленным доминантным нарушением, то есть, летальным для мужчин и поэтому прослеживающимся только у женщин. Ген в данной области кодирует митохондриальную цитохром-c-синтазу (HCCS). Клиническое проявление MLS выражается наличием микрофтальмии и анофтальмии (одно- или двусторонней) и линейными дефектами кожи, в основном лица и шеи, которые со временем проходят. Структурные патологии головного мозга, задержка в развитии и приступы (припадки) тоже входят в состав клинической картины. Нарушения сердечной деятельности (как гипертоническая кардиомиопатия и аритмия), низкий рост, грыжа диафрагмы, ногтевая дистрофия, преаурикулярный свищ, потеря слуха, мочеполовые мальформации (пороки развития, неправильное формирование) также являются частыми клиническими явлениями.

Читайте также:  Лечебные свойства коры дуба. Когда и как правильно принимать кору дуба взрослым и детям?

Скрининговая оценка предусматривает офтальмологический и дерматологический осмотр, оценку общего развития, выполнение эхокардиограммы, магнитно-резонансной томографии мозга (МРТ) и электроэнцефалограммы (ЭЭГ).


Скрининговая оценка предусматривает офтальмологический и дерматологический осмотр, оценку общего развития, выполнение эхокардиограммы, магнитно-резонансной томографии мозга (МРТ) и электроэнцефалограммы (ЭЭГ).

Хромосомные и генетические патологии у детей: почему возникают и как предотвратить?

Стоит ли отказываться беременным от обследований на возможные генетические и хромосомные патологии? Что делать, если выявлены какие-то нарушения? Имеет ли смысл делать генетический анализ еще на стадии планирования беременности? Чем опасна тенденция к рождению первых детей у женщин после 30 лет? Об этом «Литтлвану» рассказал врач-репродуктолог Андрей Иванов.

Андрей Иванов — акушер-гинеколог высшей категории. Стаж работы в сфере ЭКО — 27 лет. Окончил Первый Ленинградский медицинский институт имени академика И. П. Павлова. Член Российской ассоциации репродукции человека. В настоящее время — заведующий отделением вспомогательных репродуктивных технологий Мариинской больницы.

Когда мы говорим о хромосомных болезнях, то имеем в виду, что не хватает какой-то «флешки». Или есть лишняя. В этом случае многое зависит от объема информации, который «записан» на эту конкретную отсутствующую или дополнительную «флешку». Все хромосомы по номерам выстраиваются по принципу матрешки: самая большая первая, и вниз — вторая, третья и далее. Нарушение в менее значимых хромосомах будет меньше отражаться на индивидууме. Например, не хватает половой хромосомы и вот вам синдром Клайнфельтера. Есть нарушение в 21 хромосоме — синдром Дауна.

Истинно женская Х-хромосома больше всего вредит мужчинам

Каждая женщина – это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая – Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин – Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины – только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся – другая.

Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом. Даже если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.

X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит – это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.

Цветовая слепота

Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм – это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.

За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома – другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.

Гемофилия

Другое известное заболевание, связанное с дефектами генов X-хромосомы – это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.

Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.

Миопатия Дюшена

Еще один важный ген, располагающийся на X-хромосоме – ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.

X-сцепленный тяжелый иммунодефицит

Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.

Синдром ломкой X-хромосомы

Еще один важный ген, расположенный на X-хромосоме – ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд – легко ошибиться и написать на несколько цифер больше или меньше. Точно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.

Всегда ли лучше иметь две X-хромосомы, чем одну?

Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY – не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.

Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект – каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы – не выгодно ни для женщин, ни для мужчин.

Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.

Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.

X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

Цветовая слепота

Хромосомные и генные болезни: откуда они?

Нередко мы слышим по телевизору о детях или взрослых с хромосомными или генетическими болезнями, аномалиями. И всегда возникает закономерный вопрос – откуда берутся такие болезни и почему для их лечения нужны такие большие средства? В чем особенности данных болезней и можем ли мы предотвратить их, провести профилактику поломок в генах или хромосомах?

Читайте также:  Как распознать и побороть у себя бессонницу? При каких заболеваниях может возникнуть бессонница?

Гены и хромосомы: что мы о них знаем?

Еще с курса школьной биологии мы помним, что у человека в каждой клетке есть хромосомы и гены, основные носители всей информации обо всех процессах, происходящих в теле.

Хромосомы – это внутриклеточные структуры, расположенные в ядре, которые являются комбинацией из генов человека. А ген представляет собой комбинацию из дезоксирибонуклеиновой кислоты (ДНК) и содержит код для конкретного белка, который необходим для определенных клеток. Другими словами, в генах записана программа для сборки тех или иных белков, которые руководят процессами метаболизма.

Каждая живая человеческая клетка, за исключением сперматозоидов у мужчины или яйцеклеток у женщины, имеет всего 23 пары хромосом, что в общей сложности дает 46 хромосом. Сперматозоиды и яйцеклетки имеют только единственную от каждой из пар хромосом, на общую сумму 23 штуки. Каждая хромосома содержит от нескольких сотен до десяти и более тысяч генов.

Половые хромосомы это одна из 23 пар хромосом. У каждого из нас в клетке имеется 2 половые хромосомы, называемые X и Y. Женщины имеют две одинаковые Х-хромосомы (ХХ), а мужчины обычно имеют одну Х- и одну Y-хромосому (XY).

Структура ДНК: чем она так важна?

Основу генов и хромосом составляет ДНК (дезоксирибонуклеиновая кислота), другими словами – это наш основной генетический материал в каждой клетке. Он содержится в хромосомах внутри клеточного ядра и митохондрий. Молекула ДНК представляет собой длинную двойную спираль с перемычками, напоминающую веревочную лестницу. В ДНК всего две нити, состоящие из молекул сахара (дезоксирибоза) и фосфата, они связаны с парами из четырех молекул, называемых основаниями, которые образуют ступеньки лестницы. Эти основания, собираются в строго определенном порядке: аденин соединяется с тимином, а гуанин – с цитозином. Каждая пара оснований удерживается водородной связью. Ген состоит из последовательности оснований. Последовательности из трех оснований кодируют одну аминокислоту (аминокислоты являются строительными блоками белков) или другую информацию. Если структура цепочки ДНК изменяется, пусть даже в одном маленьком участке, это грозит серьезными проблемами для тела. Могут пострадать один или несколько генов – это будет генетическая аномалия или болезнь. Кроме того, может поломаться целая хромосома – это будет хромосомная аномалия. Теперь обсудим подробнее, что это такое.

Поломки хромосом могут повлиять на любую хромосому, включая половые. Нарушения в хромосомах могут быть в двух вариантах:

Количество хромосом (больше или меньше нормы)

Структура хромосом (нарушается их строение).

Серьезные аномалии могут быть видны под микроскопом, если проводится анализ хромосом или кариотипирование. Если это дефекты генов, проводится более сложное исследование и анализы.

Проблемы в хромосомах

Аномалии хромосом у ребенка могут быть унаследованы от родителей во время зачатия или могут возникать спонтанно, когда клетки зародыша начинают делиться. Наиболее распространенные:

Анеуплоидия. Это означает, что в ядре клеток обнаруживается больше или меньше хромосом, чем нужно – 45 или 47, реже еще больше ил меньше. Примеры включают в себя:

Синдром Дауна (трисомия 21). Клетки содержат 3 копии 21-й хромосомы.

Синдром Тернера. Одна из 2 половых хромосом не переносится. Это оставляет в клетках только одну Х-хромосому, и определяется 45 полных хромосом вместо 46.

Делеция. Это когда часть хромосомы или часть кода ДНК отсутствует. Кусок генетического материала вырван, потерян или вырезан при мутации.

Инверсия. Это происходит, когда хромосома ломается и часть ее поворачивается на 180 градусов и снова присоединяется. Инверсии могут передаваться в семьях из поколения в поколение, но они могут вызывать или не вызывать врожденные дефекты.

Кольцевые хромосомы – это ситуация, когда концы хромосомы присоединены к друг к другу, образуя кольцо. Этот дефект может быть семейным. Они могут или не могут вызвать проблемы со здоровьем.

Транслокация. Это когда хромосомный сегмент перестраивается из одного места в другое. Это может произойти либо внутри одной хромосомы, либо кусочек может перейти в другую хромосому. Есть 2 типа:

Сбалансированное перемещение. Это когда ДНК в равной степени обмениваются между хромосомами. Никакая ДНК не потеряна или не добавлена.

Робертсоновская транслокация. Это сбалансированная транслокация, в которой одна хромосома соединяется с концом другой. И получается, что у одной хромосомы больше генов, а у другой их не хватает.

Мозаицизм. Это когда человек имеет несколько разных наборов хромосом в некоторых клетках. Одни могут быть совершенно здоровыми, у части других могут быть аномалии.

Небольшие изменения (мутации) могут происходить в конкретном гене. Эти изменения не влияют на структуру хромосом и, следовательно, не могут быть видны при анализе кариотипа или других хромосомных тестов. Требуется более конкретное генетическое тестирование. Некоторые мутации в гене не вызывают проблем, а некоторые вызывают неопасные измнения (например, цвета волос или кожи) или только легкие проблемы. Другие мутации вызывают серьезные расстройства, такие как серповидноклеточная анемия, муковисцидоз или мышечная дистрофия. Все чаще ученые-медики находят конкретные генетические причины детских болезней.

Основа болезней: мутации

Считается, что ведущая причина подобных болезней – это мутации (изменения ниток ДНК под влиянием различных факторов). Остается неясным, как происходит большинство мутаций. Считается, что большинство из них появляются спонтанно, когда клетки делятся и ДНК также делится, но с ошибками в дублировании информации. Некоторые вещества или соединения в окружающей среде способны повредить ядро клетки и вызвать мутации в генах. Эти вещества называются мутагенами. К ведущим из мутагенов относят радиацию, ультрафиолетовое излучение и некоторые лекарства, химические вещества. Они могут вызывать некоторые виды рака (он связан с дефектами в ДНК) и врожденные дефекты.

Мутация, которая влияет на гены в сперматозоидах или яйцеклетке, может передаваться от родителя к ребенку. Мутация, которая влияет на гены в других клетках, может вызвать заболевание, которое не передается детям (потому что сперматозоиды или яйцеклетка не поражены). Наличие двух копий ненормального гена может привести к серьезным заболеваниям или состояниям, таким как муковисцидоз или болезнь Тея-Сакса.

Тестирование на хромосомные и генные аномалии

Хромосомы и гены человека можно исследовать и определить, где конкретно имеется дефект – в хромосоме или в определенном гене. Обычно берется анализ крови и в нем проводится оценка аномалий. Кроме того, врачи могут использовать клетки из околоплодной жидкости (при амниоцентезе) или проводится биопсия ворсин хориона (забор небольшого кусочка тканей зародыша), чтобы обнаружить определенные хромосомные или генные аномалии у плода.

Если у плода есть аномалия, могут быть проведены дополнительные тесты для выявления специфических врожденных дефектов. В последнее время был разработан скрининг-тест, при котором анализируется кровь беременной женщины. Это позволяет определить, есть ли у ее плода определенные генетические нарушения. Этот тест основан на том факте, что в крови матери содержится очень небольшое количество ДНК плода. Этот тест называется неинвазивным пренатальным скринингом (NIPS). NIPS можно использовать для выявления повышенного риска развития трисомии 21 (синдрома Дауна), трисомии 13 или трисомии 18 и некоторых других нарушений хромосом, но пока он не является диагностическим. Врачи обычно рекомендуют дальнейшее исследование и уточнение проблемы, когда обнаружен повышенный риск генной аномалии.

Возможно ли лечение или профилактика?

На сегодняшний день хромосомные и генные аномалии невозможно исправить, хотя бы при современном уровне технологий. Возможно, в будущем ученые научатся исправлять дефекты в генах и хромосомах. Тогда мы научится лечить рак и многие тяжелые патологии. Пока это кажется фантастикой, но некоторые врожденные дефекты иногда можно предотвратить. Например, прием фолиевой кислоты и других витаминов необходим для предотвращения дефектов в зачатке нервной системы, сердца или других органов. Если в семье есть проблемы генетического характера, необходимо предварительное обследование будущих родителей на наличие определенных генетических отклонений. Эмбрион, зачатый в результате экстракорпорального оплодотворения (ЭКО), также может быть проверен на генетическую аномалию до того, как он попадет в матку женщины. Это проводится не у всех зародышей, а только у тех, у кого высок риск передачи по наследству серьезных болезней.

Нередко мы слышим по телевизору о детях или взрослых с хромосомными или генетическими болезнями, аномалиями. И всегда возникает закономерный вопрос – откуда берутся такие болезни и почему для их лечения нужны такие большие средства? В чем особенности данных болезней и можем ли мы предотвратить их, провести профилактику поломок в генах или хромосомах?

Какое число хромосом в клетках у здорового человека? Что будет, если хромосом больше или меньше?

Если источник явно не указан, информация взята из книги [1] .

В случае, когда число хромосом одинаково для какой-либо таксономической единицы в целом (род, семейство), указывается название единицы без конкретизации до уровня вида (латинское наименование состоит из одного слова).

Несколько видов одного рода, имеющие одинаковое число хромосом, сводятся в одну строку таблицы.

ОрганизмЛатинское
наименование
Число
хромосом
Примечания
Тупайя обыкновеннаяTupaia60Ю. Азия
Тупайя филиппинскаяUrogale44о. Минданао. Тупайеобразные
Лемур серыйHapalemur griseus54—58Мадагаскар. Лемуровые
Лемуры обыкновенныеLemur44—60Мадагаскар. 44, 46, 48, 52, 56, 58, 60
Лемур большой крысиныйCheirogaleus major66Мадагаскар. Карликовые лемуры
Лемуры мышиныеMycrocebus66Мадагаскар
Индри хохлатыеPropithecus48Мадагаскар
Лори тонкиеLoris62Ю. Индия, Цейлон. Лориевые
Лори толстыеNycticebus50Ю. Азия. Лориевые
ПоттоPerodicticus62Африка
Галаго сенегальскийGalago senegalensis38Африка. Галаговые
Галаго толстохвостыйGalago crassicaudatus62Африка. Галаговые
Долгопят западныйTarsius bancanus80Суматра, Калимантан. Долгопяты
МирикинаAotes trivirgatus54Ю. Америка
Прыгун красныйCallicebus cupreus46Ю. Америка. Саковые
Уакари красныйCacajo rubicundus46Амазонка, Ориноко. Саковые
Саки бледныйPithecia pithecia46Север Ю. Америки
Ревун рыжийAlouatta seniculus44Ю. Америка Ревуны
Ревун чёрныйAlouatta caraya52Ю. Америка. Ревуны
Капуцин обыкновенный
Капуцин-фавн
Cebus capucinus
Cebus apella
54Ю. Америка. Капуцины
Саймири беличийSaimiri sciureus44Север Ю. Америки
Коата чёрная
Коата Жоффруа
Ateles paniscus
Ateles geoffroyi
34Север Ю. Америки. Коаты
Обезьяны шерстистыеLagothrix62Ю. Америка
МармозеткаCallimico goeldii48бассейн Амазонки
Игрунка обыкновенная
Игрунка желтоногая
Callithrix jacchus
Callithrix flaviceps
46Бразилия. Обыкновенные игрунки
Игрунка золотистаяLeontideus rosalia46Бразилия
Тамарин эдипов
Тамарин черноспинный
Тамарин рыжий
Saguinus oedipus
Saguinus nigricollis
Saguinus illigeri
46Ю. Америка. Тамарины
МакакиMacaca42Азия, С. Африка
Павиан чёрныйCynopithecus niger42о-в Сулавеси. Макаки
МангабеиCercocebus42Африка. Мартышковые
ПавианыPapio42Африка
ГеладыTerapithecus42Эфиопия
МартышкиCercopithecus54—72Африка. 54, 58, 60, 62, 66, 68, 70, 72
ГульманPygathrix entellus50Ю. Азия. Тонкотелые обезьяны
НосачиNasalis48Калимантан, 1 вид
ОрангутаныPongo48Суматра, Калимантан
ШимпанзеPan48Африка
ГориллыGorilla48Африка
СиамангиSymphalangus50Ю. Азия
ГиббоныHylobates44Ю. Азия. Кроме сиамангов
ЧеловекHomo sapiens46Земля и частично космос

Если источник явно не указан, информация взята из книги [1] .

Ссылка на основную публикацию