Сколько на небе звезд видимых и невидимых? Что влияет на видимость звезд?

Сколько на небе звезд видимых и невидимых? Что влияет на видимость звезд?

После Большого Взрыва Вселенная была горячей, плотной и однородной, но также расширялась и остывала. К тому времени, как ей стукнуло 380 000 лет, она остыла достаточно, чтобы образовать нейтральные атомы в первый раз. Но есть два препятствия, которые позволяют нам что-то увидеть:

Сколько звезд на небе?

В темное время суток, вдали от слепящих огней городов, небо открывает захватывающую картину сотен звезд, рассыпанных по созвездиям и Млечному пути. Сосчитать их самому кажется невозможным — числа кажутся фантастическими, от миллионов до миллиардов. Но сразу приходит на ум, что это именно то, чем должны заниматься астрономы. Так сколько звезд на небе в самом деле? Сегодня мы попытаемся определить точное число.

Мы уже не раз слышали, что только в видимой Вселенной триллионы звезд. Но есть нюанс — далеко не все из них человеку видны. Все дело в блеске, или звездной величине — тусклые светила вблизи выглядят ярче, чем очень мощные вдалеке. Чем меньше звездная величина, тем лучше видна звезда — но существует предел, после которого даже самый зоркий взгляд не различит звезду. Планка для человеческого глаза — звездная величина +7. Конкретная величина колеблется между +6 и +8 в зависимости от остроты зрения и темноты неба.

Созвездия нового времени

Сколько же созвездий существует в мире? Современные астрономы насчитывают их 88. Хотя до 19 века их было 117. Новое количество было зафиксировано в 1922 году на Международной конференции астрономических исследований. А в 1935 году Международным астрономическим союзом (МАС) были четко определены их границы. К созвездиям современные астрономы относят участки на небе со всеми объектами, которые там находятся.


Источник

За созвездиями и звездами лучше всего наблюдать в малоосвещённых местах, глядя на безоблачное небо. Перед «зрителем» откроется удивительная картина ночного небосклона, на котором без особого труда каждый найдет созвездие Большой и Малой Медведицы.

Также нужно учитывать, что не в каждой стране можно увидеть все 88 небесных созвездий. Например, в России видны только 54.

Источник

Звездные величины

Античные астрономы, включая Гиппарха, предполагали, что все светила, включая звезды, располагаются на поверхности одной сферы, что означало, что и дистанция от каждой из них до наблюдателя была одной и той же. Различалась, таким образом, лишь их яркость. Те объекты, у которых ее показатель был наибольшим, получили первую величину, а с наименьшим — шестую. Каталог, который выполнил Гиппарх, включал:

  • 15 звезд максимальной первой категории;
  • 45 — второй;
  • 208 — третьей;
  • 474 — четвертой;
  • 217 — пятой;
  • 49 — шестой, в которую были включены наиболее тусклые звезды.

В дальнейшем было точно определено, что звезды светят неравномерно и, помимо этого, располагаются на различных расстояниях от земли. Также помимо визуального способа определения их величины сейчас применяется фото, а также болометрический метод.

Спектральная классификация звёзд


Спектральная классификация звёзд

Количество звёзд, видимых глазом на ночном небе, в первую очередь определяется устройством самого глаза

Количество звёзд, видимых глазом на ночном небе, в первую очередь определяется устройством самого глаза: будь зрение немного острее, и звезд оказалось бы больше, будь оно чуть-чуть слабее, и мы бы не увидели ни одной звезды. Иллюстрация: Олег Сендюрев / «Вокруг света» по фотографии Reid Parham (SXC license)

Казалось бы, человеку не обязательно видеть звёзды на небе — без них вполне можно прожить. В космосе множество разных объектов и явлений, но мы их не замечаем без специальной техники. Почему же наш глаз видит звёзды, причем не две, не двести и не миллиарды, а несколько тысяч? Существует ли этому разумное объяснение?

Одно из незабываемых впечатлений в жизни каждого человека — ясное ночное небо, в чёрной глубине которого сияют тысячи огоньков — звёзды. Они так прекрасны, что даже не возникает желания задуматься — а почему мы их видим? «Ну, как же иначе? — удивитесь вы. — Разве можно не видеть звёзд?» Очень даже можно! Яркость звёзд чрезвычайно мала. Даже у самых ярких среди них она находится вблизи порога чувствительности нашего зрения. Будь этот порог чуть-чуть выше, и на небе не было бы ни одной звезды. И при этом наше дневное зрение практически не потеряло бы своего качества. Днём мы бы просто не заметили перемены в своем зрении. Тем не менее эволюция зачем-то дала нам способность видеть звёзды. Но зачем? Не для того же, чтобы некоторые из нас занимались астрономией…

Известно, что глаза далеких диких предков человека практически не отличались от наших. И не только глаза: не отличалась и вся центральная нервная система, на периферийной части которой глаза расположены. Значит, наши далёкие предки тоже видели звёзды. Но в повседневной жизни троглодита звёзды уж точно не играли никакой роли. Зачем же Homo sapiens (и не он один) видит эти ночные огоньки? Чтобы мое недоумение было понятнее, напомню: чувствительности нашего зрения не хватает, например, чтобы увидеть миллионы звёздных систем — галактик. С точки зрения эволюционной теории, это вполне закономерно: далёкие галактики никак не влияли на жизнь наших предков. Но мы не замечаем на небе даже астероидов, хотя сотни тысяч этих опасных микропланет носятся буквально у нас под носом, заполняя всю Солнечную систему. А звёзды глаз человека почему-то видит, хотя они ничем нам не угрожают и вообще (да простят меня астрологи!) не оказывают на нас никакого влияния. Способность видеть звёзды, казалось бы, никак не облегчает нам борьбу за существование. Или все-таки облегчает?

Один из важнейших принципов биологической эволюции — экономия ресурсов. Повышение чувствительности наших рецепторов, и соответствующее улучшение органов чувств — зрения, слуха или обоняния — требует дополнительных ресурсов, поэтому их чувствительность не поднимается выше того уровня, который обеспечивает необходимые эволюционные преимущества. На протяжении миллионов лет глазу довелось испытать множество метаморфоз, пока он научился видеть и днём и ночью: природе пришлось изрядно «потрудиться», создавая механизмы адаптации к яркому солнечному свету и механизмы регистрации слабого света звёзд. Неужели звёздная россыпь на ночном небе имела жизненное значение для предков человека и подобных ему животных?

Оказывается, имела. И вот почему. Ясно, что способность видеть не только днём, но и ночью — причем не только при луне, но и в безлунную ночь, когда единственным источником света служит само ночное небо, — дает видам важные преимущества в борьбе за существование. Ведь это только на первый взгляд ночное небо совершенно чёрное. Каждый, кто выглядывал ночью из палатки, знает, что ночное небо не абсолютно тёмное — оно слабо, но вполне заметно светится! Чтобы в безлунную ночь различать дорогу и силуэт врага или жертвы, минимальная чувствительность зрения должна соответствовать яркости ночного неба.

Астрономы установили, что примерно половина излучения ночного неба — это рассеянный свет звёзд. В большинстве своём это звёзды нашей Галактики, причём не все, а только те, что удалены от Земли не более чем на 3000 световых лет (более далекие звёзды скрыты за облаками межзвёздной пыли). А таких близких и видимых звёзд около 100 миллионов. Примерно столько же в сетчатке нашего глаза светочувствительных элементов — палочек. Поэтому далекие звёзды не видны по отдельности, а сливаются в сплошной темно-серый фон. Попробуем оценить, сколько звёзд в виде отдельных ярких точек на этом фоне сможет увидеть наш глаз.

Следует учесть, что разрешающая способность глаза ночью ниже, чем днём. Причин две. Во-первых, при слабом свете зрачок глаза расширяется, и начинают сказываться дефекты роговицы и хрусталика, их отличие от идеальной оптической формы. Так бывает с фотоаппаратом, когда его при полностью открытой диафрагме не удается навести на резкость. Во-вторых, при низкой освещенности мозг суммирует сигналы от нескольких соседних палочек, чтобы результирующий сигнал стал заметнее: поскольку качество картинки невысокое, эффективный размер «пикселей» можно укрупнить.

Существует несложные способ убедиться, что наш глаз искусно пользуется приемом «чувствительность за счёт качества». Как известно, ясное и чёткое изображение возникает только в центре поля зрения. Если мы смотрим на предмет в упор, то видим его мельчайшие детали, но стоит немного отвести взгляд в сторону, как изображение расплывается, и мелкие детали становятся неразличимы. Зато недостаток чёткости «бокового зрения» компенсируется его большей чувствительностью к свету: часто тусклую звезду, невидимую «в упор», легко различить боковым зрением, если немного отвести взгляд в сторону.

Итак, на каждый зрительный элемент сетчатки нашего глаза попадает свет от нескольких далеких звёзд, примерно от дюжины. Чтобы изображение близкой звезды проявилось на этом фоне как яркая точка, она должна освещать глаз в десятки раз сильнее этой группы далеких звёзд, то есть в сотни раз сильнее, чем каждая из них в отдельности. Зная основной фотометрический закон — освещенность падает обратно пропорционально квадрату расстояния от источника света, — нетрудно вычислить, что такая «заметная» звезда должна быть раз в 20–30 ближе, чем далекие 100 миллионов звёзд фона. Много ли таких близких звёзд, да и есть ли они вообще?

Если радиус сферы уменьшить, для определенности скажем, в 25 раз, то её объем уменьшится в 253 ≈ 15 тысяч раз. Легко видеть, что из 100 миллионов звёзд, равномерно распределенных в пространстве и освещающих наше небо, в этой малой сфере вокруг нас остаётся около 7000 светил. Именно они должны быть заметны нашему глазу как яркие точки на однородном фоне ночного неба. Удивительно, но наш приблизительный расчет оказался весьма точен: именно столько звёзд видит здоровый глаз человека на чистом загородном небе. Вот так биологическая эволюция и борьба с ночными хищниками за свое существование подарила нам в итоге радость созерцания красоты звёздного неба.

Не такими уж бесполезными оказались звёзды. Они действительно освещают наш ночной мир. А теперь давайте пофантазируем. Нам, людям, ведущим дневной образ жизни, для пассивной защиты от хищников достаточно глаз, различающих несколько тысяч звёзд. Но ведь существуют ночные хищники, для которых тёмное время суток — это время активной жизни. Их глаза много чувствительнее наших. Вот бы увидеть ночное небо глазами совы!

Оказывается, в принципе, это возможно: уже не раз звучали предложения переделать глаз человека, чтобы он стал в сотни раз чувствительнее к свету. Дело в том, что природа не использовала всех своих возможностей. Человеческий глаз можно значительно улучшить. Для этого нужно заменить простой хрусталик качественной многослойной линзой большего диаметра и перевернуть светочувствительную поверхность глаза — сетчатку, которая сейчас почему-то расположена у нас задней стороной к свету. После этого мы без труда сможем увидеть миллионы звёзд Млечного Пути и даже другие далёкие галактики. Без всякого телескопа! Правда, человеку со «звёздными» глазами днём, скорее всего, придется ходить в плотных тёмных очках, спасаясь от яркого солнечного света.

Впрочем, не будем спешить. Возможно, природа когда-нибудь сама изберет этот путь. Если человечество начнет расселяться по планетам Солнечной системы, то на далёких от Солнца планетах смогут жить люди только со «звёздными» глазами.

А пока… Чтобы насладиться видом звёздного неба, нужно чуть-чуть больше узнать об устройстве глаза и использовать некоторые нехитрые приемы.

Наш глаз — поразительный оптический прибор. Он совершенствовался миллионы лет и стал очень чувствительным и зорким. Восприимчивость глаза к слабому свету выше, чем у самой хорошей фотопленки и практически такая же, как у дорогой цифровой фотокамеры. Ночью глаз видит слабые звёзды, а днём спокойно переносит яркий солнечный свет, от которого вмиг чернеет любая фотопленка. И только очень дорогие объективы могут тягаться с нашим глазом по четкости изображения: здоровый глаз различает эти две точки двоеточия ( : ) в стандартном печатном тексте с расстояния 3–5 м. А угловое расстояние между ними — всего 1–2 угловых минуты!

Читайте также:  Стишки для детей 5-6 лет — о лете, осени, зиме, весне, короткие для заучивания, логопедические, о детях: лучшая подборка

А с дорогой техникой и обращаться надо осторожно. Яркий солнечный свет вреден для глаз: их надо прятать за темными стеклами очков. Ни в коем случае не смотреть прямо на Солнце, особенно через оптические приборы — бинокли и телескопы. Иначе недолго потерять зрение!

К наблюдениям ночного неба глаза нужно подготовить. Выйдя из ярко освещённой комнаты на тёмную улицу, сразу можно и не разглядеть звёзды. Не торопитесь, отойдите от фонарей и ярких окон и подождите минут пять-семь, пока глаза привыкнут к темноте, и на небе начнут «появляться» сначала яркие, а затем все более тусклые звёзды.

Не только человек видит небо — его видят все животные и даже растения; но все — по-разному. У каждого живого существа основой зрения служат светочувствительные клетки. Но в остальном конструкция глаз различается очень сильно. У растений и некоторых простых животных вообще нет глаз как отдельного органа. Например, у дождевого червя одиночные светочувствительные клетки распределены по всей поверхности тела. Поэтому он не видит изображения, а лишь чувствует, с какой стороны от него светлее. Днём он может заметить свет неба и определить, что выбрался на поверхность земли, но не более того. А вот на теле пиявки небольшие скопления зрительных клеток окружены с трех сторон темным непрозрачным пигментом; поэтому к зрительным клеткам свет проникает только с одной стороны, и пиявка может заметить движение жертвы или хищника, а возможно, и бегущие по небу облака.

Даже у высокоразвитых животных глаза сильно различаются чувствительностью к свету и четкостью восприятия. Например, у ночных животных — крыс или сов — зрение намного чувствительнее, чем у человека; для них небо усеяно звёздами гораздо гуще, чем для нас.

Зато по остроте зрения у человека почти нет соперников. Пожалуй, в этом отношении ему не уступают лишь обезьяны, крысы и хищные птицы. А вот кошка, курица или лошадь видят во много раз менее чётко. Что уж говорить о хомячке или пчеле, которые не могут различить даже дисков Луны и Солнца: эти светила кажутся им такими же «точками», как нам звёзды или планеты. Кстати, обычный человек не отличит звёзду от планеты: они нам кажутся точками одинакового размера. Но встречаются счастливцы с особенно острым зрением, которые видят спутники Юпитера и даже Венеру в форме серпа (ведь у нее те же фазы, что и у Луны).

С другой стороны, мелкая пчела или стрекоза, хоть и не могут похвастаться особенно резким зрением, зато различают движения в 10–20 раз более быстрые, чем может различить человек. Для человека полет по небу метеора или вспышка молнии длятся мгновение, а для стрекозы это целый кинофильм.

Так что не будем особенно восторгаться своим зрением, а лучше станем его беречь и тренировать. Ведь оно дарит нам такое наслаждение, как созерцание звёздного небосвода!

Не только человек видит небо — его видят все животные и даже растения; но все — по-разному. У каждого живого существа основой зрения служат светочувствительные клетки. Но в остальном конструкция глаз различается очень сильно. У растений и некоторых простых животных вообще нет глаз как отдельного органа. Например, у дождевого червя одиночные светочувствительные клетки распределены по всей поверхности тела. Поэтому он не видит изображения, а лишь чувствует, с какой стороны от него светлее. Днём он может заметить свет неба и определить, что выбрался на поверхность земли, но не более того. А вот на теле пиявки небольшие скопления зрительных клеток окружены с трех сторон темным непрозрачным пигментом; поэтому к зрительным клеткам свет проникает только с одной стороны, и пиявка может заметить движение жертвы или хищника, а возможно, и бегущие по небу облака.

Спросите Итана: сколько из видимых на небе звёзд на самом деле существует?


Анимация вспыхнувшей в XVII веке сверхновой в созвездии Кассиопеи

Глядя на Вселенную, мы принимаем как должное, что то, что мы видим, существует на самом деле прямо сейчас. Но на самом деле это не совсем так. При общении с астронавтами миссий «Аполлон» были задержки, поскольку свету требовалось чуть более двух секунд, чтобы дойти до них и обратно. Роверы на Марсе вынуждены действовать самостоятельно, поскольку задержки в несколько минут слишком велики для того, чтобы люди вручную меняли направление их движения. А если выйти за пределы Солнечной системы, то расстояния до звёзд будут измеряться световыми годами, что означает, что когда мы видим удалённый объект, мы смотрим в прошлое. А откуда мы знаем, что то, что мы видим, совпадает с тем, что там есть? Один из читателей хочет узнать:

Сколько из наблюдаемых нами с Земли звёзд реально существуют? Поскольку свет от многих из них прошёл до нас сотни, тысячи и даже миллионы световых лет, не существует ли возможности, что многие из видимых нами звёзд уже отгорели или взорвались сотни или тысячи лет назад, и свет этих событий (или его отсутствие) просто не успел до нас дойти?

Ответ очень сильно зависит от того, насколько далеко вы готовы заглянуть.


Такое калифорнийское небо, которое в идеальных условиях можно увидеть невооружённым глазом

Невооружённым взглядом в идеальных условиях – полная темнота, никакого светового загрязнения, облаков, луны, полный обзор всего неба – человек способен рассмотреть чуть более чем 9000 звёзд. Все эти звёзды находятся в нашей галактике, так что ни одна из них не расположена в миллионах световых лет от нас. Но некоторые находятся в сотнях световых лет. Денеб, одна из ярчайших звёзд на небе (и вершина Летнего Треугольника) находится в 2600 световых годах от нас, а самая далёкая звезда, различаемая глазом — V762 Cas – находится в 16 000 световых годах от нас.


Летний треугольник, Денеб виден в левой части

Но большая часть видимых звёзд находится всего в нескольких сотнях световых лет от нас, или даже меньше. И хотя смерть звёзд представляется нам внезапной, на самом деле жизненный цикл звёзд таков, что звезда на пути к умиранию проходит несколько важных фаз. Конкретно, звезда:

• должна увеличиться до красного гиганта и начать сжигать гелий,
• должна сжечь гелий в ядре и начать синтез углерода,
• сжечь углерод и начать синтез кислорода и более тяжёлых элементов, вплоть до того, как из кремния получится железо, никель и кобальт,
• и только тогда, когда в ядре заканчивается топливо для синтеза, ядро резко сжимается и происходит взрыв сверхновой.

Лишь малая часть звёзд – порядка одной из нескольких сотен – достаточно массивны, чтобы умереть внезапно. Остальные сбрасывают внешние слои и сжимаются до белого карлика за десятки тысяч лет.

Но массивные звёзды непропорционально ярки, поэтому велика вероятность, что увидим мы именно их! И хотя глазом можно увидеть всего около 9000 звёзд, на кандидатуру следующей сверхновой в нашей галактике могут претендовать десятки звёзд. Очень сложно, глядя на одиночную звезду, понять, на каком жизненном этапе она находится, и как скоро она станет сверхновой. Такая звезда, как Эта Киля или Бетельгейзе уже могла взорваться и закончить свою жизнь – или же может продолжать светить ещё сотни и тысячи лет, сжигая топливо. Не существует сигнала типа «она сейчас рванёт», а в случае с Этой Киля недавний выброс (массовый выброс огромного количества вещества) в XIX веке мог задержать её взрыв в виде сверхновой на время, превышающее отрезок существования человека.


Туманность Гомункул, окружающая гигантскую звезду Эта Киля, находящуюся в 7000 световых годах от нас в нашем Млечном пути

В среднем звезда, которой суждено стать сверхновой, остаётся в такой неопределённой, гигантской фазе жизни, от одного до десяти миллионов лет. Хотя существует множество теорий по поводу признаков, предшествующих превращению звезды в сверхновую, на самом деле последняя из наблюдаемых нами в нашей галактике сверхновых взорвалась более 4000 лет назад, самые новые из открытых останков были обнаружены более 100 лет назад, а по поводу звезды, взорвавшейся в 1987 году в галактике-спутнике известно очень мало. Это был самый близкий взрыв сверхновой из наблюдавшихся человечеством с 1604 года.


Остатки сверхновой 1987а, расположенные в Большом Магеллановом облаке, в 165 000 световых лет от нас

Учитывая, что типичный кандидат на сверхновую, видимый невооружённым глазом, в среднем располагается где-то в 4000 световых годах от нас, а во всём небе таких звёзд наберётся штук 25, то существует шанс от 1% до 10%, что одной из видимых нами звёзд уже нет. Не такая уж большая вероятность.

А что насчёт обратного процесса? Что насчёт возникающих звёзд? Нам кажется, что существует какой-то волшебный момент, в который нечто просто начинает проводить синтез протонов в ядре и «включается», становясь звездой. На самом деле формирование звезды – от протозвезды до настоящей, подлинной звезды из главной последовательности – занимает десятки миллионов лет.


Время, требующееся протозвезде, чтобы стать настоящей звездой, сильно зависит от её массы

Невооружённым глазом протозвёзды мы не увидим, поскольку они формируются внутри туманностей: в таких местах, как туманность Ориона или туманность Орла. Эти гигантские комплексы молекулярных облаков испытывают гравитационный коллапс, и порождают тысячи новых звёзд, формирующихся на отрезке в миллионы и десятки миллионов лет. После испарения газа внутри, наконец, становятся видны звёзды, многие из которых становятся различимы глазом.


Туманность Орла. В центре можно видеть «Столпы творения»

Но эти звёзды не появляются внезапно и не становятся видимыми сразу по окончанию их формирования. Мы можем надеяться только на взрыв сверхновой, которая обнаружит себя в том месте, где мы раньше не видели звёзд. Наилучшим приближением для оценки такого событие будет то, что мы наблюдали в течение нашей истории – такое случается раз в несколько столетий.


Тихо Браге указывает на сверхновую 1572 года

Если мы захотим взять бинокль, то перейдём от 9 000 звёзд к 200 000. Небольшой трёхдюймовый телескоп поднимет это количество до 5 миллионов. Хороший любительский телескоп диаметром 15″ позволит нам увидеть уже примерно 380 млн звёзд в нашей галактике, что сильно повысит наши шансы. Но даже если мы возьмём все 200-400 млрд звёзд в нашей галактике, среднее расстояние до которых составит порядка 40 000 световых лет, то уже погибшими из них окажутся порядка нескольких сотен тысяч – одна на миллион – и они будут расположены на дальнем от нас краю галактики.

Поскольку звёзды так далеки, наши глаза слишком слабы, а их свет передвигается слишком быстро для того, чтобы они успели умереть, когда свет ещё находится в пути. Это возможно, но шансов на это очень мало.


Но эти звёзды не появляются внезапно и не становятся видимыми сразу по окончанию их формирования. Мы можем надеяться только на взрыв сверхновой, которая обнаружит себя в том месте, где мы раньше не видели звёзд. Наилучшим приближением для оценки такого событие будет то, что мы наблюдали в течение нашей истории – такое случается раз в несколько столетий.

Сколько звезд видно невооруженным взглядом?

Присмотритесь к звездному небу, разыщите на нем с помощью звездной карты созвездия, и вы скоро убедитесь, как легко ориентироваться на небе, держать на учете все звезды, видимые невооруженным глазом.

Всего таких звезд около шести тысяч, а сразу над горизонтом их видно не более трех тысяч. Если мы говорим «около», то лишь потому, что острота зрения и прозрачность воздуха бывают различными.

Читайте также:  Эмпатия: уровень, развитие у детей и взрослых. Тест на эмпатию по Юсупову и Бойко

Со средним биноклем число видимых звезд увеличивается примерно до 10 000, а на фотографических пластинках, полученных при большой выдержке с использованием самых мощных действующих телескопов, число звезд на всей полусфере составляет 2—3 миллиарда. Большинство из них принадлежит Млечному Пути и только самые яркие звезды в далеких галактиках можно различить на фотографиях.

Вас может заинтересовать

Живя в городах, мы практически лишены «настоящего» звездного неба.

Если мысленно разбить небесную сферу на квадраты, каждый из которых равен по площади диску полной Луны, как она видна с Земли (получится 200000 квадратов), то в каждом из таких квадратов, обладай мы сверхмощным телескопом, было бы видно по 10 000 звезд.

Конечно нам все это многообразие почти не видно – звезды выше 6-ой звездной величины без телескопа не разглядеть, а ведь с уменьшением яркости звезд их число растет. А это значит, что ночное небо скрывает от нас куда больше, чем показывает!

В списки звездных каталогов занесены не только все звезды видимые вооруженным глазом, но и множество более слабых.

Сосчитаны и занесены в каталоги, а также на карты все звезды ярче одиннадцатой звездной величины. Число звезд более слабых мы тоже знаем, но уже не так точно, да это и не столь важно.

В результате подсчет числа звезд ярче данной предельной звездной величины можно представить следующей таблицей (данные устаревшие, сейчас известно на порядок больше звезд всех звездных величин приведенных в таблице. Однако пропорции звездная величина/число звезд остались такими же и наглядно демонстрируют общую тенденцию):

Предельная звездная величинаЧисло звезд
6,04 860
7.014 300
8,041 000
9,0117 000
10,0324 000
11,0870 000
13,05 700000
15,032 000 000
17,0160 000 000
19,0560 000 000
21,02 000 000 000

В результате подсчет числа звезд ярче данной предельной звездной величины можно представить следующей таблицей (данные устаревшие, сейчас известно на порядок больше звезд всех звездных величин приведенных в таблице. Однако пропорции звездная величина/число звезд остались такими же и наглядно демонстрируют общую тенденцию):

Почему мы видим так мало звезд на небе?

Почему одного «да будет свет!» во Вселенной недостаточно? «Взгляните на красоту жизни. Взгляните на звезды и узрите, как сами бежите с ними», — говорил Марк Аврелий. Представьте себе ночное небо. Вдали от городов, в безлунную ночь, в самых темных местах, в которых вы когда-либо бывали. Может быть, вы ложились на траву и смотрели в небо. Воздух прохладный, небо чистое, никаких облаков, и вы смотрите ввысь.

Там планеты, яркие и тусклые звезды, и даже Млечный Путь, который можно увидеть периферическим зрением, если смотреть немного в сторону. Но самое интересное в ночном небе не присутствие этих немногих тусклых огоньков, а скорее тот факт, что практически в любой точке, в которую вы смотрите, небо само по себе темное.

Если вы подумаете об этом минутку, то это покажется странным. Если Вселенная на самом деле полна звезд — точек света во всех направлениях — то вы бы в полной мере рассчитывали, что куда ни посмотри, в конце концов ваша линия взгляда попадет на звезду.

И как только это произойдет, вы больше не будете видеть «темноту» на небе. Каждая точка наполнится светом, вне зависимости от того, как далеко находится звезда, галактика или другая точка света.

Разрешение этого парадокса, конечно, заключается в том, что когда мы смотрим на далекую Вселенную, мы смотрим назад во времени, и когда Вселенная существовала в горячем, плотном, более однородном состоянии, было время, когда не было никаких звезд. Если смотреть дальше определенной точки, вы никогда не увидите ни одной звезды.

После Большого Взрыва Вселенная была горячей, плотной и однородной, но также расширялась и остывала. К тому времени, как ей стукнуло 380 000 лет, она остыла достаточно, чтобы образовать нейтральные атомы в первый раз. Но есть два препятствия, которые позволяют нам что-то увидеть:

  1. Пока нет ничего, что излучает свет, смотреть не на что.
  2. Вселенной нужно быть прозрачной.

Хотя эти две проблемы — образование первых звезд и прозрачность Вселенной — нередко объединяются как «темные века», они остаются двумя отдельными проблемами, которые нужно решить.

Потребовались десятки миллионов лет, но когда прошло достаточно времени, эти сгустки выросли достаточно большими, чтобы гравитация привела к их коллапсу. И когда ядра этих сгустков атомов и молекул стали достаточно плотными, начался процесс термоядерного синтеза — сжигания водородного топлива в гелий.

Эти места термоядерного синтеза стали ядрами первых звезд во Вселенной, горячих и ярких, и излучающих первый видимый свет во Вселенной с момента первых стадий горячего Большого Взрыва. Это произошло спустя 50 миллионов лет от начала истории Вселенной, и это довольно короткое время для первых звезд.

Проблема в том, что мы не видим ни одну из этих звезд.

Хотя одиночные атомы обладают только определенными атомными переходами, которые могут поглощать свет, когда они связаны вместе всеми видами сложных конфигураций, они могут блокировать весь спектр видимого света. Этот тип непрозрачности образовался, когда появились первые звезды: Вселенная, может быть, и породила свет, но он не нашел пути к нашим глазам.

Хотя одиночные атомы обладают только определенными атомными переходами, которые могут поглощать свет, когда они связаны вместе всеми видами сложных конфигураций, они могут блокировать весь спектр видимого света. Этот тип непрозрачности образовался, когда появились первые звезды: Вселенная, может быть, и породила свет, но он не нашел пути к нашим глазам.

Количество звёзд, видимых на небе простым глазом, кажется неисчислимым.
На самом деле их не так уж много.
Одновременно в нашем поле зрения, как
говорят учёные, бывает не более трёх
тысяч звёзд, потому что мы видим
половину небесного свода.
Звёзды – это те же солнца. Они кажутся
нам блестящими точками, удалёнными от
Земли на необозримые расстояния.
Ещё в древности люди заметили, что
некоторые группы ярких звёзд образуют
разные фигуры. Разделив всё небо на
созвездия, астрономы составили звёздные
карты. Все звёзды, даже самые маленькие,
были причислены к тому или иному
созвездию.
И расположение звёзд в созвездиях, и
расстояние их друг от друга кажутся
неизменными. Объясняется это тем, что
астрономическая наука появилась
сравнительно недавно. Звёзды в течение
этого времени не успели ещё изменить
своего видимого положения на небосводе.
Движутся они с огромными скоростями в
разных направлениях, однако они так
далеки от нас, что мы не замечаем этого
движения. По расчётам учёных, заметить
его можно будет лишь через десятки тысяч
лет.
Задание:
1.найти сложные приложения
2.простое осложнено причастным оборотом
3.простое осложнено деепричастным оборотом
4.простое осложнено не распространеным определением.
ПОМОГИТЕ ПОЖАЛУЙСТА МНЕ СРОЧНО НУЖНО

u0433u043eu0432u043eu0440u044fu0442 u0443u0447u0451u043du044bu0435, u0431u044bu0432u0430u0435u0442 u043du0435 u0431u043eu043bu0435u0435 u0442u0440u0451u0445

u0442u044bu0441u044fu0447 u0437u0432u0451u0437u0434,( u043fu043eu0442u043eu043cu0443 u0447u0442u043e u043cu044b u0432u0438u0434u0438u043c

u043fu043eu043bu043eu0432u0438u043du0443 u043du0435u0431u0435u0441u043du043eu0433u043e u0441u0432u043eu0434u0430).u0415u0449u0451 u0432 u0434u0440u0435u0432u043du043eu0441u0442u0438 u043bu044eu0434u0438 u0437u0430u043cu0435u0442u0438u043bu0438,( u0447u0442u043e

u043du0435u043au043eu0442u043eu0440u044bu0435 u0433u0440u0443u043fu043fu044b u044fu0440u043au0438u0445 u0437u0432u0451u0437u0434 u043eu0431u0440u0430u0437u0443u044eu0442

u0440u0430u0437u043du044bu0435 u0444u0438u0433u0443u0440u044b). u041eu0431u044au044fu0441u043du044fu0435u0442u0441u044f u044du0442u043e u0442u0435u043c, (u0447u0442u043e

u0430u0441u0442u0440u043eu043du043eu043cu0438u0447u0435u0441u043au0430u044f u043du0430u0443u043au0430 u043fu043eu044fu0432u0438u043bu0430u0441u044c

u0441u0440u0430u0432u043du0438u0442u0435u043bu044cu043du043e u043du0435u0434u0430u0432u043du043e).u0414u0432u0438u0436u0443u0442u0441u044f u043eu043du0438 u0441 u043eu0433u0440u043eu043cu043du044bu043cu0438 u0441u043au043eu0440u043eu0441u0442u044fu043cu0438 u0432

u0440u0430u0437u043du044bu0445 u043du0430u043fu0440u0430u0432u043bu0435u043du0438u044fu0445, u043eu0434u043du0430u043au043e (u043eu043du0438 u0442u0430u043a

u0434u0430u043bu0435u043au0438 u043eu0442 u043du0430u0441, u0447u0442u043e u043cu044b u043du0435 u0437u0430u043cu0435u0447u0430u0435u043c u044du0442u043eu0433u043e

2.u041fu0440u043eu0441u0442u043eu0435, u043eu0441u043bu043eu0436u043du0435u043du043e u043fu0440u0438u0447u0430u0441u0442u043du044bu043c u043eu0431u043eu0440u043eu0442u043eu043c.u041au043eu043bu0438u0447u0435u0441u0442u0432u043e u0437u0432u0451u0437u0434, /u0432u0438u0434u0438u043cu044bu0445 u043du0430 u043du0435u0431u0435

u043fu0440u043eu0441u0442u044bu043c u0433u043bu0430u0437u043eu043c, u043au0430u0436u0435u0442u0441u044f u043du0435u0438u0441u0447u0438u0441u043bu0438u043cu044bu043c.u041eu043du0438 u043au0430u0436u0443u0442u0441u044f

u043du0430u043c u0431u043bu0435u0441u0442u044fu0449u0438u043cu0438 u0442u043eu0447u043au0430u043cu0438, /u0443u0434u0430u043bu0451u043du043du044bu043cu0438 u043eu0442

u0417u0435u043cu043bu0438 u043du0430 u043du0435u043eu0431u043eu0437u0440u0438u043cu044bu0435 u0440u0430u0441u0441u0442u043eu044fu043du0438u044f

3.u041fu0440u043eu0441u0442u043eu0435, u043eu0441u043bu043eu0436u043du0435u043du043e u0434u0435u0435u043fu0440u0438u0447u0430u0441u0442u043du044bu043c u043eu0431u043eu0440u043eu0442u043eu043c. /u0420u0430u0437u0434u0435u043bu0438u0432 u0432u0441u0451 u043du0435u0431u043e u043du0430

u0441u043eu0437u0432u0435u0437u0434u0438u044f-.-.-. /, u0430u0441u0442u0440u043eu043du043eu043cu044b u0441u043eu0441u0442u0430u0432u0438u043bu0438 u0437u0432u0451u0437u0434u043du044bu0435

2.u041fu0440u043eu0441u0442u043eu0435, u043eu0441u043bu043eu0436u043du0435u043du043e u043fu0440u0438u0447u0430u0441u0442u043du044bu043c u043eu0431u043eu0440u043eu0442u043eu043c.u041au043eu043bu0438u0447u0435u0441u0442u0432u043e u0437u0432u0451u0437u0434, /u0432u0438u0434u0438u043cu044bu0445 u043du0430 u043du0435u0431u0435

Зачем человеку звёзды на небе

Одно из незабываемых впечатлений в жизни каждого человека — ясное ночное небо, в чёрной глубине которого сияют тысячи огоньков — звёзды. Они так прекрасны, что даже не возникает желания задуматься — а почему мы их видим? «Ну, как же иначе? — удивитесь вы. — Разве можно не видеть звёзд?» Очень даже можно! Яркость звёзд чрезвычайно мала. Даже у самых ярких среди них она находится вблизи порога чувствительности нашего зрения. Будь этот порог выше, и на небе не было бы ни одной звезды. И при этом наше дневное зрение практически не потеряло бы своего качества. Днём мы бы просто не заметили перемены в своем зрении. Тем не менее эволюция дала нам способность видеть звёзды. Но зачем? Не для того же, чтобы некоторые из нас занимались астрономией…

Топ заблуждений об астрономии. 9. На небе мы видим звёзды

Казалось бы, ну а здесь-то как можно ошибиться? Ну, ОК, кроме звёзд, мы ещё видим планеты, искусственные спутники, а с телескопом ещё галактики и туманности (впрочем, некоторые из них и без телескопа тоже). Где тут проблема? Или мы, на самом деле, не видим звёзды?

Да, на самом деле, мы их не видим: увы, мы способны видеть только лишь свет от звёзд. Ну, или иное от них излучение — через спецприборы.

Казалось бы, зачем тут эта придирка к деталям? Когда мы говорим: «я вижу стол», — мы ведь тоже имеем в виду, что мы увидели свет, отражённый столом, сложившийся в некоторую картинку на сетчатке нашего глаза, которую мозг распознал, как стол. Однако для краткости мы называем это «я вижу стол». Может быть, со звёздами всё точно так же?

Дело в том, что у света конечная скорость распространения. Очень большая — порядка 300 000 км/с, но всё же конечная.

Пока мы находимся в пределах Земли, мы имеем дело с расстояниями от сантиметров до, максимум, километров (расстояние до горизонта — порядка четырёх километров), поэтому изображение предмета долетает до нас за миллионные или даже миллиардные доли секунды. Ввиду чего мы можем отождествлять увиденный нами свет с самим объектом? За миллионную долю секунды стол вряд ли успел сильно измениться, да и если даже он двигался с нашими земными скоростями, то ошибка в его наблюдаемом нами местоположении, по сравнению с реальным, слишком ничтожна, чтобы иметь для нас значение.

Но в космосе иные масштабы. Луна находится в среднем в 380 000 километрах от Земли, поэтому свет передаёт нам то, что было на ней чуть более секунды назад.

Марс в самом оптимистичном для нас случае находится уже в 55 миллионах километров от Земли, поэтому его мы видим с задержкой в три минуты. В среднем же он удалён от нас на 225 миллионов километров и тут уже речь о задержке в двенадцать минут.

Плутон от нас в среднем в 5,7 миллиардах километров. Поэтому мы видим его с запозданием более чем в пять часов.

Глядя на небо, мы всё время смотрим в прошлое.

Но в далёкое ли? ОК, Плутон мы видим в его состоянии пять часов назад, но это ж вроде бы не так много? Он, конечно, успел куда-то улететь, но наверно ведь недалеко?

Скорость Плутона порядка 16 800 км/ч, то есть за пять часов он улетает примерно на 85 000 километров, что примерно вчетверо больше максимально возможного расстояния на поверхности Земли.

И Плутон ещё относительно близко от нас.

Удобной единицей измерения для космических расстояний является «световой год». Про него часто ошибочно думают, будто бы в световых годах каким-то хитрым способом измеряется время — ведь «год» же. Но нет, «световой год» — это буквально то расстояние, которое свет проходит в вакууме за год.

Легко догадаться, что если измерять расстояние в световых годах, то ровно с той же задержкой в годах мы будем видеть этот объект.

Читайте также:  Техники рисования красками. Рисуем красками с детьми

Так вот, до ближайшей (кроме, конечно, Солнца) к нам звезды — Проксимы Центавра — 4,2 светового года.

Чуть подальше — примерно в 6 световых годах — находится звезда Барнарда. Эта звезда примечательна тем, что она довольно быстро движется относительно нашей системы. Её скорость порядка 142 км/с.

За год она проходит 4,5 миллиарда километров. Как было сказано выше, расстояние до Плутона — 5,7 миллиарда километров. И вот эта звезда за год преодолевает четыре пятых от него.

За то время, пока от неё доходит до нас свет, она успевает преодолеть шесть таких расстояний — 28 миллиардов километров.

Диаметр нашей галактики — порядка 100 000 световых лет.

Если бы звезда Барнарда была бы расположена на другом краю галактики, то за то время, пока к нам бы дошёл её свет, она успела бы пролететь 11 расстояний от нас до ближайшей к нам звезды.

Ну, или если мы, предположим, сумели бы каким-то образом разглядеть планету на этом самом противоположном к нам галактическом краю, то ситуация на ней соответствовала бы стотысячелетней давности. У нас на планете всего 5500 лет прошло от появления письменности до современной цивилизации, 40 000 лет назад вымерли последние неандертальцы, а 45 000 лет назад появилось то, что сейчас называется «нами» — Homo sapiens — как видом.

Там ведь тоже всё могло поменяться за 100 000 лет.

Одна из ближайших к нам галактик — галактика Андромеды — находится от нас в 2,5 миллионах световых лет и движется в нашу сторону со скоростью примерно 300 км/с. В результате она сейчас находится в 2500 световых годах от того положения, где мы её видим. Это почти как 600 расстояний от нас до Проксимы Центавра.

Сейчас в телескопы можно разглядеть и гораздо более далёкие объекты. И увидеть, таким образом, ещё более далёкое прошлое. Тем более далёкое, чем дальше от нас находится данный объект.

Расположение звёзд на небе не просто не соответствует их текущему расположению в пространстве, но вдобавок ещё и не соответствует расположению ни в какой момент времени вообще: поскольку более дальние от нас объекты успели сместиться на большее расстояние, чем ближние.

Вот как это можно проиллюстрировать. Предположим, что с зелёного кружка в центре данной иллюстрации мы наблюдаем некие, вращающиеся вокруг него объекты. Все эти объекты находятся довольно далеко, поэтому задержка по времени уже существенна.

Слева изображено, как объекты расположены в пространстве в данный момент, а справа — то расположение, которое мы бы видели с этого зелёного кружка.

Чтобы было понятнее, наложим картинки друг на друга.

В нашей гипотетической ситуации хотя бы сохраняется сам рисунок, хотя и смещаются расположения его фрагментов, однако в реальности небесные объекты движутся друг относительно друга не столь простым образом. И наблюдаем мы ситуацию вовсе не из неподвижного центра кругового вращения.

Иными словами, видимые нами созвездия — это именно что «видимые нами». Это не только уникальная пространственная их проекция на нашу личную «небесную сферу», но и наш уникальный временной срез ситуации — по сферическим слоям.

Переместившись на относительно далёкую звезду, мы бы увидели звёздные расклады совершенно иными. Не только «под другим углом из другой точки», но и «в другом расположении во времени».

Во вселенной всё сейчас уже не так, как мы сейчас видим. И ни в какой момент времени не было так.

Бетельгейзе.

Причём не так не только расположение объектов, но и сами объекты. У звёзд ведь есть свой жизненный цикл — они рождаются в туманностях, взрываются сверхновыми, сгорают и превращаются в звёзды другого типа. Всё это мы можем наблюдать с Земли, но наблюдаем мы по-прежнему прошлое.

В настоящем же, возможно, некоторые из тех звёзд, которые мы видим на небе, уже не существуют. И не только в далёких-далёких галактиках, а даже в нашем ближайшем окружении. И не только видимые в телескоп, а даже видимые невооружённым глазом.

Например, одно из наиболее узнаваемых созвездий — созвездие Ориона, несёт на своём плече одну из самых ярких на нашем небе звёзд — Бетельгейзе.

Увы, вполне возможно, что её уже нет.

Мы видим её такой, какой она была 450—600 лет назад (точная оценка расстояния до звёзд такого типа сейчас сопряжена с некоторыми трудностями), и уже тогда она была в стадии, в которой весьма вероятен её взрыв, как сверхновой.

Вероятность, правда, не означает гарантии — астрономические масштабы времени весьма протяжённы, и она вполне может просветить ещё миллион лет, а то и вообще не взорваться, а просто выгореть, однако вероятность всё-таки не нулевая, а потому не исключено, что она взорвалась прямо сейчас, но узнаем мы об этом только через полтысячелетия.

Как не исключено и то, что как раз полтысячелетия назад она и взорвалась, поэтому мы узнаем об этом прямо сейчас.

Впрочем, даже если Бетельгейзе продержится ещё долго, то всё равно ведь вспышки сверхновых постоянно наблюдаются. И большинство на самом деле произошли десятки тысяч, сотни тысяч, а то и десятки миллионов лет назад.

И в тот момент, когда с небосвода исчезает какая-то звезда, на самом деле всего лишь исчезает с нашего неба «фотография» её далёкого прошлого.

Казалось бы, зачем тут эта придирка к деталям? Когда мы говорим: «я вижу стол», — мы ведь тоже имеем в виду, что мы увидели свет, отражённый столом, сложившийся в некоторую картинку на сетчатке нашего глаза, которую мозг распознал, как стол. Однако для краткости мы называем это «я вижу стол». Может быть, со звёздами всё точно так же?

Самые дальние звезды Млечного пути видимые невооруженным глазом

Конечно, этот маленький кружок посреди Млечного пути захватывает дух и заставляет задумать о многих вещах, начиная от бренности бытия и заканчивая безграничными размерами вселенной, но все же возникает вопрос: насколько все это соответствует действительности?

К сожалению, составители изображения не указали радиус желтого круга, а оценивать его на глазок – сомнительное занятие. Тем не менее авторы твиттера @FakeAstropix задались таким же вопросом как и я, и утверждают, что эта картинка верна где-то для 99% звезд, видимых на ночном небе.

Другой вопрос заключается в том, а сколько вообще звезд можно увидеть на небе не пользуясь оптикой? Считается, что невооруженным глазом с поверхности Земли можно наблюдать до 6000 звезд. Но в реальности это число будет куда меньше – во первых, в северном полушарии мы физически сможем видеть не больше половины от этого количества (это же справедливо и для жителей южного полушария), во-вторых речь идет об идеальных условиях наблюдения, которых в реальности практически невозможно достичь. Чего только стоит одно световое загрязнение неба. А когда речь идет о самых дальних видимых звездах, то в большинстве случаев чтобы заметить их, нам нужны именно идеальные условия.

Но все же, какие из маленьких мерцающих точек на небе являются наиболее далекими от нас? Вот список, который мне пока что удалось составить (хотя конечно совсем не удивлюсь, если я много чего пропустил, так что не судите строго).

Денеб – самая яркая звезда в созвездии Лебедя и двадцатая по яркости звезда в ночном небе, с видимой звездной величиной +1,25 (считается, что предел видимости для человеческого глаза +6, максимум +6.5 для людей с действительно великолепным зрением). Этот бело-голубой сверхигагинт, который находится от нас на расстоянии от 1500 (последняя оценка) до 2600 световых лет – таким образом, видимый нами свет Денеба был испущен где-то в промежутке между зарождением Римской республики и падением Западной Римской империи.

Масса Денеба больше массы нашей звезды примерно в 200 раз Солнца, а светимость превышает солнечную минимум в 50 000 раз. Находись он на месте Сириуса, он бы сверкал на нашем небе ярче, чем полная Луна.

Мю Цефея известная также как Гранатовая звезда Гершеля – красных сверхгигант, возможно самая крупная звезда, видимая невооруженным глазом. Ее светимость превышает солнечную от 60 000 да 100 000 раз, радиус согласно последним оценкам может быть в 1500 раз больше солнечного. Мю Цефея находится на расстоянии 5500-6000 световых лет от нас. Звезда находится в конце своего жизненного пути и в скором (по астрономическим меркам) времени превратится в сверхновую. Ее видимая звездная величина меняется от +3,4 до +5. Считается, что она является одной из самых красных звезд на северном небе.

В заключение стоит упомянуть, что в истории были случаи, когда люди имели возможность наблюдать куда более далекие звезды. Например, в 1987 в Большом Магеллановом облаке, находящемся от нас на расстоянии 160 000 световых лет, вспыхнула сверхновая, которую можно было видеть невооруженным глазом. Другое дело, что в отличии от всех перечисленных выше сверхгигантов, наблюдать ее можно было в течении куда меньшего промежутка времени.

Мю Цефея известная также как Гранатовая звезда Гершеля – красных сверхгигант, возможно самая крупная звезда, видимая невооруженным глазом. Ее светимость превышает солнечную от 60 000 да 100 000 раз, радиус согласно последним оценкам может быть в 1500 раз больше солнечного. Мю Цефея находится на расстоянии 5500-6000 световых лет от нас. Звезда находится в конце своего жизненного пути и в скором (по астрономическим меркам) времени превратится в сверхновую. Ее видимая звездная величина меняется от +3,4 до +5. Считается, что она является одной из самых красных звезд на северном небе.

Какая звезда обладает наивысшей скоростью собственного движения

Если, конечно, не считать Солнце, по этому показателю выделяется звезда Барнарда. По оценке учёных, светило меняет свои угловые координаты на небе на 10 секунд в год. И это, несмотря на то, что это довольно тусклый карлик, расположенный на расстоянии 6 световых лет от нашей главной звезды.

Звезда Барнарда

Правда, другие звёздные объекты не могут похвастаться таким высоким собственным движением. Вероятно, от этого и зависит обманчивое впечатление их неподвижности.

Итак, объясняет движение звезд небу вращение нашей родной планеты вокруг своей оси. Помимо этого, не стоит забывать о том, что она кружится вокруг Солнца. Кстати, часто именно из-за Солнца мы не можем увидеть многие звёзды. Оно просто перекрывает наш обзор.

20 захватывающих научных сериалов обо всём


ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций – важный фактор

Тире при приложении

Приложение — определение, выраженное существительным.

ПравилоПример
Если перед приложением можно подразумевать без изменения смысла речи союз «а именно»Основная директива — повышение качества продукции — выполняется успешно.
Если приложение стоит на конце предложения и присоединяется как бы в порядке добавления к сказанномуСо мною был чугунный чайник — единственная отрада моя в путешествиях по Кавказу
Если приложений несколько, чтобы установить границу между приложениями и определяемым существительнымЛютейший бич небес, природы ужас — мор свирепствует в лесах
Если приложение относится к одному из однородных членов, чтобы не смешивать приложения с однородным членомВ комнате сидела бабушка, мой брат — пятилетний Петя, сестра Нина и я.
Если внутри приложения есть запятыеМы, дедовский храня обычай, несём домой из гор добычу — оленя, сбитого стрелой

б) при сказуемом есть сравнительный союз (как, будто, словно, точно, вроде как, всё равно что, что и др.) (Звёзды будто алмазы; Небо точно море);

Ссылка на основную публикацию